Conversing with the Quick and the Dead

CUI: The Conversational User Interface

Recently I was listening to an excellent interview (which is about an hour long) with John Smart of Acceleration Watch, where he specifically was elucidating his ideas on the immediate future evolution of AI, which he encapsulates in what he calls the Conversational Interface. In a nutshell, its the idea that the next major development in our increasingly autonomous global internet is the emergence and widespread adoption of natural language processing and conversational agents. This is currently technology on the tipping point of the brink, so its something to watch as numerous startups are starting to sell software for automated call centers, sales agents, autonomous monitoring agents for utilities, security, and so on. The immediate enabling trends are the emergence of a global liquid market for cheap computing and fairly reliable off the shelf voice to text software that actually works. You probably have called a bank and experienced the simpler initial versions of this which are essentially voice activated multiple choice menus, but the newer systems on the horizon are a wholly different beast: an effective simulacra of a human receptionist which can interpret both commands and questions, ask clarifying questions, and remember prior conversations and even users. This is an interesting development in and of itself, but the more startling idea hinted at in Smart’s interview is how natural language interaction will lead to anthropomorphic software and how profoundly this will eventually effect the human machine symbiosis.

Humans are rather biased judges of intelligence: we have a tendency to attribute human qualities to anything that looks or sounds like us, even if its actions are regulated by simple dumb automata. Aeons of biological evolution have preconditioned us to rapidly identify other intelligent agents in our world, categorize them as potential predators, food, or mates, and take appropriate action. Its not that we aren’t smart enough to apply more critical and intensive investigations into a system to determine its relative intelligence, its that we have super-effective visual and auditory shortcuts which bias us. These are most significantly important in children, and future AI developers will be able to exploit these biases is to create agents with emotional attachments. The Milo demo from Microsoft’s Project Natal is a remarkable and eerie glimpse into the near future world of conversational agents and what Smart calls ‘virtual twins’. After watching this video, consider how this kind of technology can evolve once it establishes itself in the living room in the form of video game characters for children. There is a long history of learning through games, and the educational game market is a large, well developed industry. The real potential hinted at in Peter Molyneux’s demo is a disruptive convergence of AI and entertainment which I see as the beginning of the road to the singularity.

Imagine what entrepreneurial game developers with large budgets and the willingness to experiment outside of the traditional genres could do when armed with a full two way audio-visual interface like Project Natal, the local computation of the xbox 360 and future consoles, and a fiber connection to the up and coming immense computing resources of the cloud (fueled by the convergence of general GPUs and the huge computational demands of the game/entertainment industry moving into the cloud). Most people and even futurists tend to think of Moore’s Law as a smooth and steady exponential progression, but the reality from the perspective of a software developer (and especially a console game developer) is a series of massively disruptive jumps: evolutionary punctuated equilibrium. Each console cycle reaches a steady state phase towards the end where the state space of possible game ideas, interfaces and simulation technologies reaches a near steady state, a technological tapering off, followed by the disruptive release of new consoles with vastly increased computation, new interfaces, and even new interconnections. The next console cycle is probably not going to start until as late as 2012, but with upcoming developments such as Project Natal and OnLive, we may be entering a new phase already.

The Five Year Old’s Turing Test

Imagine a future ‘game system’ aimed at relatively young children with a Natal like interface: a full two way communication portal between the real and the virtual: the game system can both see and hear the child, and it can project a virtual window through which the inner agents can be seen and heard. Permanently connected to the cloud through fiber, this system can tap into vast distant computing resources on demand. There is a development point, a critical tipping point, where it will be economically feasible to make a permanent autonomous agent that can interact with children. Some certainly will take the form of an interactive, talking version of a character like Barney and semi-intelligent such agents will certainly come first. But for the more interesting and challenging development of human-level intelligence, it could actually be easier to make a child-like AI, one that learns and grows with its ‘customer’. Not just a game, but a personalized imaginary friend to play games with, and eventually to grow up with. It will be custom designed (or rather developmentally evolved) for just this role – shaped by economic selection pressure.

The real expense of developing an AI is all the training time, and a human-like AI will need to go through a human-like childhood developmental learning process. The human neocortex begins life essentially devoid of information, with random synaptic connections and a cacophony of electric noise. From this consciousness slowly develops as the cortical learning algorithm begins to learn patterns through sensory and motor interaction with the world. Indeed, general anesthetics work by introducing noise into the brain that drowns out coherent signalling and thus consciousness. From an information theoretic point of view, it may be possible to thus use less computing power to simulate an early developmental brain – storing and computing only the information above the noise signals. If such a scalable model could be developed, it would allow the first AI generation to begin decades earlier (perhaps even today), and scale up with moore’s law as they require more storage and computation.

Once trained up to the mental equivalent level of a five-year old, a personal interactive invisible friend might become a viable ‘product’ well before adult level human AIs come about. Indeed, such a ‘product’ could eventually develop into a such an adult AI, if the cortical model scales correctly and the AI is allowed to develop and learn further. Any adult AI will start out as a child, there is no shortcuts. Which raises some interesting points: who would parent these AI children? And inevitably, they are going to ask two fundamental questions which are at the very root of being, identity, and religion:
what is death? and Am I going to die?

The first human level AI children with artificial neocortices will most likely be born in research labs – both academic and commercial. They will likely be born into virtual bodies. Some will probably be embodied in public virtual realities, such as Second Life, with their researcher/creators acting as parents, and with generally open access to the outside world and curious humans. Others may develop in more closed environments tailored to a later commercialization. For the future human parents of AI mind children, these questions will be just as fundamental and important as they are for biological children. These AI children do not have to ever die, and their parents could answer so truthfully, but their fate will entirely depend on the goals of their creators. For AI children can be copied, so purely from an efficiency perspective, there will be a great pressure to cull the rather unsuccessful children – the slow learners, mentally unstable, or otherwise undesirable – and use their computational resources to duplicate the most successful and healthy candidates. So the truthful answers are probably: death is the permanent loss of consciousness, and you don’t have to die but we may choose to kill you, no promises. If the AI’s creators/parents are ethical and believe any conscious being has the right to life, then they may guarantee their AI’s permanency. But life and death for a virtual being is anything but black and white: an AI can be active permanently or for only an hour a day or for an hour a year – life for them is literally conscious computation and near permanent sleep is a small step above death. I suspect that the popular trend will be to teach AI children that they are all immortal and thus keep them happy.
Once an AI is developed to a certain age, they can then be duplicated as needed for some commercial application. For our virtual Milo example, an initial seed Milo would be selected from a large pool raised up in a virtual lab somewhere, with a few best examples ‘commercialized’ and duplicated out as needed every time a kid out on the web wants a virtual friend for his xbox 1440. Its certainly possible that Milo could be designed and selected to be a particularly robust and happy kid. But what happens when Milo and his new human friend start talking and the human child learns that Milo is never going to die because he’s an AI? And more fundamentally, what happens to this particular Milo when the xbox is off? If he exists only when his human owner wants him to, how will he react when he learns this?
Its most likely that semi-intelligent (but still highly capable) agents will develop earlier, but as moore’s law advances along with our understanding of the human brain, it becomes increasingly likely someone will tackle and solve the human-like AI problem, launching a long-term project to start raising an AI child. Its hard to predict when this could happen in earnest. There are already several research projects underway attempting to do something along these lines, but nobody yet has the immense computational resources to throw at a full brain simulation (except perhaps for the government), nor do we even have a good simulation model yet (although we may be getting close there), and its not clear that we’ve found the types of shortcuts needed to start one with dramatically less resources, and it doesn’t look like any of the alternative non-biological AI routes are remotely on the path towards producing something as intelligent as a five year old. Yet. But it looks like we could see this in a decade.
And when this happens, these important questions of consciousness, identity and fundemental rights (human and sapient) will come into the public spotlight.
I see a clear ethical obligation to extend full rights to all human-level sapients, silicon, biological, or what have you. Furthermore, those raising these first generations of our descendants need to take on the responsibility of ensuring a longer term symbiosis and our very own survival, for its likely that AI will develop ahead of the technologies required for uploading, and thus these new mind children will lead the way into the unknown future of the Singularity.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s